82 resultados para ESTs, genomics, invasive species, maternal effects, rapid adaptation, selection, Senecio madagascariensis

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive species can induce shifts in habitat use by native taxa: either by modifying habitat availability, or by repelling or attracting native species to the vicinity of the invader. The ongoing invasion of cane toads (Rhinella marina) through tropical Australia might affect native frogs by affecting refuge-site availability, because both frogs and toads frequently shelter by day in burrows. Our laboratory and field studies in the wet-dry tropics show that native frogs of at least three species (Litoria tornieri, Litoria nasuta and Litoria dahlii) preferentially aggregate with conspecifics, and with (some) other species of native frogs. However, the frogs rarely aggregated with cane toads either in outdoor arenas or in standardized experimental burrows that we monitored in the field. The native frogs that we tested either avoided burrows containing cane toads (or cane toad scent) or else ignored the stimulus (i.e. treated such a burrow in the same way as they did an empty burrow). Native frogs selected a highly non-random suite of burrows as diurnal retreat sites, whereas cane toads were less selective. Hence, even in the absence of toads, frogs do not use many of the burrows that are suitable for toads. The invasion of cane toads through tropical Australia is unlikely to have had a major impact on retreat-site availability for native frogs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Birds are a particularly good group with which to examine the importance of maternal effects, as parental contributions can be relatively easily quantified compared with other groups. There have undoubtedly been more studies on maternal effects in the Zebra Finch than any other single bird species. Studies of this species have examined the importance of maternal effects mediated through sex allocation, size, nutrients and hormones of of eggs, incubation behaviour and provisioning levels. A synthesis of all of this work illustrates some contrasting results (e.g. many high-profile results have failed to be replicated), some very common patterns (e.g. investment shifts through the laying sequence), and potentially interesting and complex interactions between traits (e.g. between sex of offspring and hormonal profiles of eggs). This extensive collection of work on the Zebra Finch provides useful general insight into the patterns of maternal investment in birds and the effects on offspring phenotype. However, we caution that the literature is probably littered with studies that have overemphasised the importance of some maternal effects and recent studies have highlighted analytical and logical flaws that have probably led to misplaced confidence in some of the findings reported to date. Finally, it is worth considering that the bulk of the literature is based on studies of captive domesticated birds and ecological and physiological data from individuals in the wild is currently lacking. The biological relevance of maternal effects documented in this model species is therefore unclear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An understanding of which native species are severely impacted by an anthropogenic change (such as the arrival of an invasive species) and which are not is critical to prioritizing conservation efforts. However, it is difficult to detect such impacts if the native taxa exhibit strong stochastic variations in abundance; a ‘natural’ population decline might be wrongly interpreted as an impact of the invader. Frillneck lizards (Chlamydosaurus kingii) are large iconic Australian agamids, and have been reported to decline following the invasion of toxic cane toads. We monitored three populations of the species in the savanna woodland of tropical Australia over a 7-year period bracketing toad arrival. One population crashed, one remained stable and one increased. Hence, studies on any single population might have inferred that cane toads have negative, negligible or positive effects on frillneck lizards. With the benefit of spatial replication, and in combination with observations of prey choice by captive lizards, our data suggest that invasive cane toads have had little or no effect on frillneck abundance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All rights reserved.Invader species are a great threat to local flora. Eight invader species of Pakistan were screened for their allelopathic activity through sandwich method. Toxic (inhibitory) and non-toxic (stimulatory) effects were assessed by recording their effect on germination and growth of lettuce. Radicle and plumule growth of lettuce were recorded at 5, 10 and 50 mg leaves concentrations of each species. Among all species the growth activity was found to be concentration dependent. Except Eutcalyptus glabra all species resulted in inhibitory effects at 5, 10 and 50 mg leaves concentrations. Xanthium strumarium and Cannabis sativa showed strong inhibitory effects on radicle and plumule growth of lettuce. Maximum inhibition was recorded at highest concentration; even growth of lettuce was stopped with 50 mg leaves concentration of C. sativa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive species are known to cause environmental and economic damage, requiring management by control agencies worldwide. These species often become well established in new environments long before their detection, resulting in a lack of knowledge regarding their history and dynamics. When new invasions are discovered, information regarding the source and pathway of the invasion, and the degree of connectivity with other populations can greatly benefit management strategies. Here we use invasive common starling (Sturnus vulgaris) populations from Australia to demonstrate that genetic techniques can provide this information to aid management, even when applied to highly vagile species over continental scales. Analysis of data from 11 microsatellites in 662 individuals sampled at 17 localities across their introduced range in Australia revealed four populations. One population consisted of all sampling sites from the expansion front in Western Australia, where control efforts are focused. Despite evidence of genetic exchange over both contemporary and historical timescales, gene flow is low between this population and all three more easterly populations. This suggests that localized control of starlings on the expansion front may be an achievable goal and the long-standing practice of targeting select proximal eastern source populations may be ineffective on its own. However, even with low levels of gene flow, successful control of starlings on the expansion front will require vigilance, and genetic monitoring of this population can provide essential information to managers. The techniques used here are broadly applicable to invasive populations worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. How species reach and persist in isolated habitats remains an open question in many cases, especially for rapidly spreading invasive species. This is particularly true for temporary freshwater ponds, which can be remote and may dry out annually, but may still harbour high biodiversity. Persistence in such habitats depends on recurrent colonisation or species survival capacity, and ponds therefore provide an ideal system to investigate dispersal and connectivity. 2. Here, we test the hypothesis that the wide distributions and invasive potential of aquatic snails is due to their ability to exploit several dispersal vectors in different landscapes. We explored the population structure of Physa acuta (recent synonyms: Haitia acuta, Physella acuta, Pulmonata: Gastropoda), an invasive aquatic snail originating from North America, but established in temporary ponds in Doñana National Park, southern Spain. In this area, snails face land barriers when attempting to colonise other suitable habitat. 3. Genetic analyses using six microsatellite loci from 271 snails in 21 sites indicated that (i) geographically and hydrologically isolated snail populations in the park were genetically similar to a large snail population in rice fields more than 15 km away; (ii) these isolated ponds showed an isolation-by-distance pattern. This pattern broke down, however, for those ponds visited frequently by large mammals such as cattle, deer and wild boar; (iii) snail populations were panmictic in flooded and hydrologically connected rice fields. 4. These results support the notion that aquatic snails disperse readily by direct water connections in the flooded rice fields, can be carried by waterbirds flying between the rice fields and the park and may disperse between ponds within the park by attaching to large mammals. 5. The potential for aquatic snails such as Physa acuta to exploit several dispersal vectors may contribute to their wide distribution on various continents and their success as invasive species. We suggest that the interaction between different dispersal vectors, their relation to specific habitats and consequences at different geographic scales should be considered both when attempting to control invasive freshwater species and when protecting endangered species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of biological invasion exposes a species to novel pressures, in terms of both the environments it encounters and the evolutionary consequences of range expansion. Several invaders have been shown to exhibit rapid evolutionary changes in response to those pressures, thus providing robust opportunities to clarify the processes at work during rapid phenotypic transitions. The accelerating pace of invasion of cane toads (Rhinella marina) in tropical Australia during its 80-year history has been well characterized at the phenotypic level, including common-garden experiments that demonstrate heritability of several dispersal-relevant traits. Individuals from the invasion front (and their progeny) show distinctive changes in morphology, physiology and behaviour that, in combination, result in far more rapid dispersal than is true of conspecifics from long-colonized areas. The extensive body of work on cane toad ecology enables us to place into context studies of the genetic basis of these traits. Our analyses of differential gene expression from toads from both ends of this invasion-history transect reveal substantial upregulation of many genes, notably those involved in metabolism and cellular repair. Clearly, then, the dramatically rapid phenotypic evolution of cane toads in Australia has been accompanied by substantial shifts in gene expression, suggesting that this system is well suited to investigating the genetic underpinnings of invasiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on invasion biology has been largely dominated by studies on the ecological effects of invasion events, although recently, evolutionary processes have been shown to be important to invasion success. This is largely attributed to novel genomic tools that provide new opportunities to unravel the natural history, taxonomy, and invasion pathways of invasive species, as well as the genetic basis of adaptive traits that allow them to expand within and beyond their native range. Despite these advances and the growing literature of genomic research on terrestrial pests, these tools have not been widely applied to marine invasive species. This is in part due to the perception that high levels of dispersal and connectivity in many invasive marine species can limit the opportunity for local adaptation. However, there is growing evidence that even in species with high dispersal potential, significant site-specific adaptation can occur. We review how these “omic” tools provide unprecedented opportunities to characterise the role of adaptive variation, physiological tolerance, and epigenetic processes in determining the success of marine invaders. Yet, rapid range expansion in invasions can confound the analysis of genomic data, so we also review how data should be properly analysed and carefully interpreted under such circumstances. Although there are a limited number of studies pioneering this research in marine systems, this review highlights how future studies can be designed to integrate ecological and evolutionary information. Such datasets will be imperative for the effective management of marine pests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive species are a major threat to global biodiversity but can also serve as valuable model systems to examine important evolutionary processes. While the ecological aspects of invasions have been well documented, the genetic basis of adaptive change during the invasion process has been hampered by a lack of genomic resources for the majority of invasive species. Here we report the first larval transcriptomic resource for the Northern Pacific Seastar, Asterias amurensis, an invasive marine predator in Australia. Approximately 117.5 million 100 base-pair (bp) paired-end reads were sequenced from a single RNA-Seq library from a pooled set of full-sibling A. amurensis bipinnaria larvae. We evaluated the efficacy of a pre-assembly error correction pipeline on subsequent de novo assembly. Error correction resulted in small but important improvements to the final assembly in terms of mapping statistics and core eukaryotic genes representation. The error-corrected de novo assembly resulted in 115,654 contigs after redundancy clustering. 41,667 assembled contigs were homologous to sequences from NCBI's non-redundant protein and UniProt databases. We assigned Gene Ontology, KEGG Orthology, Pfam protein domain terms and predicted protein-coding sequences to > 36,000 contigs. The final transcriptome dataset generated here provides functional information for 18,319 unique proteins, comprising at least 11,355 expressed genes. Furthermore, we identified 9,739 orthologs to P. miniata proteins, evaluated our annotation pipeline and generated a list of 150 candidate genes for responses to several environmental stressors that may be important for adaptation of A. amurensis in the invasive range. Our study has produced a large set of A. amurensis RNA contigs with functional annotations that can serve as a resource for future comparisons to other echinoderm transcriptomes and gene expression studies. Our data can be used to study the genetic basis of adaptive change and other important evolutionary processes during a successful invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The capacity of non-native species to undergo rapid adaptive change provides opportunities to research contemporary evolution through natural experiments. This capacity is particularly true when considering ecogeographical rules, to which non-native species have been shown to conform within relatively short periods of time. Ecogeographical rules explain predictable spatial patterns of morphology, physiology, life history and behaviour. We tested whether Australian populations of non-native starling, Sturnus vulgaris, introduced to the country approximately 150 years ago, exhibited predicted environmental clines in body size, appendage size and heart size (Bergmann's, Allen's and Hesse's rules, respectively). Adult starlings (n = 411) were collected from 28 localities from across eastern Australia from 2011 to 2012. Linear models were constructed to examine the relationships between morphology and local environment. Patterns of variation in body mass and bill surface area were consistent with Bergmann's and Allen's rules, respectively (small body size and larger bill size in warmer climates), with maximum summer temperature being a strongly weighted predictor of both variables. In the only intraspecific test of Hesse's rule in birds to date, we found no evidence to support the idea that relative heart size will be larger in individuals which live in colder climates. Our study does provide evidence that maximum temperature is a strong driver of morphological adaptation for starlings in Australia. The changes in morphology presented here demonstrate the potential for avian species to make rapid adaptive changes in relation to a changing climate to ameliorate the effects of heat stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the studies on invasive species are disproportionately focused on their ecological effects and more investigations are needed to understand the effects of invasive plants on rural livelihoods. This study assesses the effects of the invasion of Mikania micrantha-an invasive vine-on the livelihoods of the buffer zone community forest users of Chitwan National Park, Nepal. In this study, the invasive plants are categorized based on their life-form (woody and non-woody) and mode of introduction (accidental or deliberate). The focus is on accidentally transported non-woody species. A household survey revealed that the invasion disproportionately affects the livelihoods of forest-dependent households. In addition, the livelihood effects of invasive plants are particularly determined by the suitability of the invasive plants to produce locally important forest products. © 2014 Steve Harrison, John Herbohn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive species can disrupt the communication systems that native biota use for reproductive interactions. In tropical Australia, invasive cane toads (Rhinella marina) breed in many of the same waterbodies that are used by native frogs, and males of both the invader and the native taxa rely on vocal signals to attract mates. We conducted playback experiments to test the hypothesis that calls of toads may influence the calling behaviour of frogs (Limnodynastes convexiusculus and Litoria rothii). Male L. convexiusculus adjusted their calling rate and the variance in inter-call interval in response to a variety of sounds, including the calls of cane toads as well as those of other native frog species, and other anthropogenic noise, whereas L. rothii did not. Within the stimulus periods of playbacks, male L. convexiusculus called more intensely during long silent gaps than during calling blocks. Thus, males of one frog species reduced their calling rate, possibly to minimise energy expenditure during periods of acoustic interference generated by cane toads. In spite of such modifications, the number of overlapping calls (within stimulus periods) did not differ significantly from that expected by chance. In natural conditions, the calls of cane toads are continuous rather than episodic, leaving fewer gaps of silence that male frogs could exploit. Future work could usefully quantify the magnitude of temporal (e.g. diel and seasonal) and spatial overlap between calling by toads and by frogs and the impact of call-structure shifts on the ability of male frogs to attract receptive females.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ectotherms are taxa considered highly sensitive to rapid climate warming. This is because body temperature profoundly governs their performance, fitness and life history. Yet, while several modelling approaches currently predict thermal effects on some aspects of life history and demography, they do not consider how temperature simultaneously affects developmental success and offspring phenotypic performance, two additional key attributes that are needed to comprehensively understand species responses to climate warming. Here, we developed a stepwise, individual-level modelling approach linking biophysical and developmental models with empirically derived performance functions to predict the effects of temperature-induced changes to offspring viability, phenotype and performance, using green sea turtle hatchlings as an ectotherm model. Climate warming is expected to particularly threaten sea turtles, as their life-history traits may preclude them from rapid adaptation. Under conservative and extreme warming, our model predicted large effects on performance attributes key to dispersal, as well as a reduction in offspring viability. Forecast sand temperatures produced smaller, weaker hatchlings, which were up to 40% slower than at present, albeit with increased energy stores. Conversely, increases in sea surface temperatures aided swimming performance. Our exploratory study points to the need for further development of integrative individual-based modelling frameworks to better understand the complex outcomes of climate change for ectotherm species. Such advances could better serve ecologists to highlight the most vulnerable species and populations, encouraging prioritization of conservation effort to the most threatened systems.